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NOTATION

Amplitude of solitary wave

Constants in the solitary wave equatlon

Elevation of vortex singularity (b = b'/AL"')
Complex potential

Drag force (F = F'/pgdt'®)

Solitary wave depth at infinity (h = h'/2')

Integration varlable

Depth at crest(solitary wave) and upstream (singularity).

Outer free-surface elevation (N = n'/4")

Inner velocity components
(w=u/(@nt v =vi/e)?)
Velocity at solitary wave crest

(u, = uj/(et)?)

Outer velocity components (dimensionless)
Complex velocity

Horizontal and vertical inner coordinates
(x =x'' y=y'/2")

Outer coordinates
Complex varilable
Dimensionless wave number

Constant in the solitary wave equation

Vortex strength (6 = 6'/@*&")
Small parameter
Inner free-surface elevation (n = n'/L')
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ABSTRACT

The two-dimensional free-surface flow generated by a singu~

larity moving with near-critical speed (i.e. with Froude number

referred to the water depth near unity)is solved by using the
method of matched asymptotic expansions. In the vicinity of the

singularity the problem 1s solved by an Infinitesimal wave ex-
pansion (inner exvansion) while at large distances from the singu-
larity shallow water theory provides the proper solution (outer
expansion). A composite expansion provides a uniformly-valid so-
lution for the velccity components, the free-surface profile and
the dra< force. These two basic approaches of water-wave theory
are shown to be solutions of the same flow problem, but valid in
differ - reglons. Although the lnner expanslon satisfles linear
equations, the solution depends nonlinearly on the small parameter

of the prcblem (the singularity strength).

INTRODUCTICN

A singularity moving at constant speed in finite-depth water
is considered herein. The flow is two-dimensional and it is
steady when referred vo a moving coordlnate system. In this sys-
tem the standing singularity is considered to be a perturbation

of a stream of uniform velonity.

The nonlinear free-surface problem has been solved by a
first order Infinitesimal wave expansion for different types of
singularities (Wehausen and Laitone, 1960, review the solutions).
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All solutions diverge, however, when the unperturbed velocity
approaches 1its critical value, i.e. when the Froude number based
on stream depth tends to unity. It 1s generally assum~d that
the linear theory fails in this case (Stoker, 1957, p. 217).

The other basic approach, nonlinear shallow water theory, is
able to predict the existence of waves of finite amplitude at
near-critical speeds; but this theory cannot represent flows 1in
the vicinity of sinonularities, bercause 1t 15 rased on the assump-
tion that the horizontal velocity component is almost uniform and

much larger than the vertical one,.

The purpose of this paper 1is to solve the problem of criti-
cal flow by using the method of matched asymptotic expansions
(Van Dyke, 1964). The infinitesimal wave expansion will be shown
to provide a meaningful solution in the vicinity of the singularity
and will be called, consequently the inner expansion. This expan-
sion diverges at a large distance from the singularity. There, an
outer expansion, derived according to matching requirements, de-
scribed the flow conditions. This outer expansicn is preciscly
the well-known shallow water theory. A composite expansion,
therefore, solves the paradoxal problem of critical flows. The
results, however, go beyond this purpose; they show that the two
basic theories of water waves are organically interrelated by
the method of matched asymptotic expansions.

The present paper is an extension of previous work ir which
the method of matched asymptotic expansions was applied to free-
surface flows in porous media (Dagan, 1967).

i
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THE HOMOGENEOUS PROBLEM: THE SOLITARY WAVE

The derivation of the sollitary wave by the method of matched

asymptotic expansions will be discussed in the first stage.

With the varliables of Figure 1 made dimensionless by re-
ferring the velocity components u, v to (gl')% and the lengths

to L', the exact equations of flow are

u +v =0 [1]
X y
(0<y <)
uy - v, = 0 [2]
u2
P2 +v®) + =1+ —%— (3]
(y = n)
v-un =0 (4]
v =0 (y = 0) [8]
n=1 (x = 0) (6]
, = h (|x]| = =) (7]

u

The solution for the flow in the vicinity of crest A is

A being the veloclty at the crest,

sought ty a first-order infinitesimal wave expansion whose zero

order term {s a uniform r'low of velocity u, and depth o * i,

i.e.
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=4~
- 3
u Uy + euy
Vv = €Vy
) (8]
n=1+e€em
Uy = Uy + euA1 )

¢ being the small parameter,

By substituting the expansion [8] into Equaticns [1]-[6],
and discarding the condition at infinity [7], one obtains the

usual linearized equations

Uy + vly =0 (9]
(0<y<1)
1y " Vig ® 0 (10]
UL+ T = U, [11]
(y = 1)
vi-um, - 0 {12]
vy =0 (y = C) (13]
m =0 (x = C) {14]

Considering, for the sake of simplicity, only the reglon

x 2 0, the elementary solution of Equations [9]}-[ ] may be
written as
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uy cs(cosh a - cos ax cosh ay) + ¢, sin ax cosh ay + u, [15]
1

e At

vy ~Cg sin ax sinh ay - c, sinh ay cos ax [16]

M = -c.u_ cosh a (1-cos ax) - c,u, cosh a sin ax [17]

where a 1s the root of the equation

tanh a -y 2 [18]

a 0

and u < 1.
o)

The solution is continued in the region x < O by replacing

S
and cC multiply, therefore, a smooth solution at the origin and

X by -x in Equations [15]-[17]. The two arbitrary constants c

a cusped one, respectively (equation 17).

The above well-known solutlion 1s periodic and cannot satisfy
the requirements of nonper.odicity and uniformity at le = ® eX-
pressed by Figure 1 and Equation [7]. In the vicinity of the
origin, however, and for small a (i.e. uo close to the critical
speed u_ = 1) tke solution [15]-[18] may be expanded in a power

series ss follows

:2 x2 2|
i i o) b cC Cs 2 Ay [l ]
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Be
V=€ (-ccay - csazxy) [20]
2.2
ax
n=1+ef-cuax-cu =3 [21]
tanha _, _of  _ 2 [22]
a - 3 s o @ - o

with the highest order retained being C(ea?).

The solution expressed by Equations [19]-[22] becomes un-
bounded as x = =, the expansion belng therefore singular there.
Considering thls as an inner expansion, an outer expansion is
sought according to the usual procedure (Van Dyke, 1964) by
adopting the following outer variables

[23]

The outer variables of [23] have been selected so that for
large x the quadratic term in Equation [21] becomes of the order

of magnitude 0(1) with respect to e.

The inner variables may now be expanded tentatively in an ¢

power seriles

U= UO + €Uy + ... [24]
V=¢€¢Vy + ... [25]
N = No + eNy + ... [26]

+
Saagiag it

G i s i
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The Equations [23]-[26] represent precisely the shallow
water expansion of Friederichs and Keller (Friederichs, 1948).

The outer expansion of the exact Equations [1]}-[6] has been
carried out systematically by Laitone (Laitone, 1960) and wiil
not be repeated here. The first order egquations are the well-

known shallow water equations, the solution being (Laitone, 1960)

Nt

U = No = const. [27]
Uy = £(X) N, = -[Uof‘(x) + C) Vi =0 [28]

The function f(X) satisfies the differential equation

£ --9——f2-—LSf=o [29]

XX oy s U
(o] o]

where C 1s an arbltrary constant.

Since the solution has to be used only in the outer zone,
the nonlinear Equation [29] may be easily solved by iterations
in the vicinity of X = w (with f(») = 0); but we may take ad-
vantage of the fact that the exact solution of [29] 1is well
known being in the nonperiodical case (Laitone, 1963)

%
£(X) = - ﬁ_g--sech2 (% ﬁzg) (X + B) (30]
0
0
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where 8 1s an arbitrary constant.

u € c C
Al’ 3 S’ C)

pear in the inner and outer solutions have to be found by matching

The constants U C, Uo’ No and B which ap~

and by using the Equations [7] and [27]. The matching is carried
out by requiring that the inner limit of the outer representation
should be equal to the outer limit of the inner representation

(Van Dyke, 1964).

The inner limit of the outer representation is obtained by

replacing the outer variables in Equations [27]-[30] by the inner
variables of Equation [23] and expanding as € = O and X is fixed.
The result for the function f 1is :

1
£ =--L [1 - 2BDe®x - D?(1-3B2) exa] +o.. "31]
U A%
o}
c H
where, for, briefness, D = (%-——Z) s, A = cosh DB and B = tanh DB.

U

o}

In Equation [31] only the terms necessary for matching at the

considered order have been retained.

The substitution of [31] in Equations [23]-{28], rewritten

in inner variables, ylelds

2 2
2CBD  3/2, _ .C_D_%Z:E_l e2x? [32]

- - 2-
N = No €CB Y

Wi a8

2 2
U = Uo— eCa + 2CBE 63/2x + Qg_iliig_l e2x® [33]
UOA UOA UOA

U E e TR
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The comparison of Equations [32] and [33] with Equations [19]

and [21] shows that the matching at zero order requires

—3 —3 4 r
No UO ug 1 [34]

which means that the unperturbed flow must be near critical. More-
over, a has to be of crder 5% in order to make the matching pos-
sible at higher order. For thé sake of simpllcity we can take
aacs = € and express the inner expansion [19) and [21] as

2
n=1- cce3/2x - %5 xZ +... [35])

= 3/2, .1 2.2 ,
u=1+ euA1 + e x5 ex +... [36]

Since terms of order e2y® and €2 of u appear in €Uz only
and terms of order €%y of v appear in €?Vz (Laitone, 1960), they
have been discarded in Equations [35] and [36].

It can be easlly checked that the palr of functions

2 2
u=c X ugcli_:_L
c 2
[37]
V= -c.y vV = -c Xy

which appear in the inner expansion [19] and [20] are exact solu-
tions of the linearized Equations [9]-[23] when u, = 1. They are

the elementary first order solutions of the homogeneous linearized

S w4t oo s AN | i
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equations of a {ree-surface flow at critical speed, counterpart

of the sin and cos solutions [15] and [16] of a subcritical flow.
The Equation [37] may be used directly as first order solutions

of Equations [9]-[13] with u, = 1. The derivation by the limiting
process discussed here 1s useful, however, for the case of a singu-

larity as well as for higher order expansions.

The matching of the outer terms [32] and [33] with the inner
terms [35] and [3€] is a matter of algebraic computation.

In the case of the solitary wave a solution which 1s smooth
at the origin is sought. Hence, Co = 0 and the corresponding
outer term 2CBD/U0A2 =0, i,e. B=0, A =1, and 8 = O.

The inner and outer expansions, written in inner variables,

become in this case

2
n=1- %5 x2 7
2
- £_ 2
u=u + euAl + 5 X
5 P (38]
N=N - Y e®x®
o U 6
o)
2
U=y -8 423 8 (2,2
o) Uo u? J
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The matching at first order with the supplementary conditlons
1 :
= 2 =
U, =N7®and N =H (for x = ») yilelds

[N

N =U =u_=1 e =1-H C=(2/3)? eu, = 1-H [39]

A,

The complete solution of the solltary wave should be ex-
pressed by a composite expansion, but this 1s not necessary since
the cuter expansion is regular in the inner zone and coincides
with the inner expansicn, i.e. the overlapping zone colncides with
the inner zone. Hence, the whole solution 1s expressed by Equa-
tions [26], [28], [30] and [39] in inner variables as

1

1 =h + (1-h) sech® [ﬂi;hl] Ex : [40]

which is the well known solitary wave solution. The veloclities

at the crest and at infinite are

uA = ] = euA1 = h

(41]
u, = Uo = ]

or, in dimensional varlables
' = \/-E-- _'Eﬁ‘h'
UA h' ‘v l+a' []

u ' = Vet = Ygn(1+a' /)

which 1s, again, a classical result.




HYDRONAUTICS, Incorporated

-12-

It seems, therefore, that the method of matched asymptotic
expansions does not provide any improvement in the accuracy of
the shallow water solution, This feature is, however, charac-
teristic for the solitary wave which has a uniform structure in
the vicinity of the crest, but wi’l be different in the case of

& moving singularity.

The derivation of the c¢noidal waves 1s entirely similar to

that of the solitary wave and wlill not be considered here.

The possibility of matching the outer exvansion with an inner

solution which has a non-zero derivative at the origin (cc # 0)

is the key to the solution of flow past singularities.

FLOW PAST A SINGULARITY

A submerged vortex in a uniform, unperturbed stream will be

considered for the sake of definlteness. Any other type of singu-

larity may be treated in a similar way (Figure 2).

It 1s worthwhile for the following derivations to discuss
first the radiat‘on condition. 1In both subcritical and super-
ceritical flows the fiow is unperturbed at x = -» (Stoker, 1957).
Adopting the same condition in the case of a near-critical flow,
it is convenient to take, N, = 1 and u, in the inner expansion
as the unperturbed depth and velocity at x = - rather than at
X = 0. Since the infinitesimal wave expansion will be shown to
be regular, under the above radiation condition, in the region
x < 0, the expansion may £till be called the "inner" expansion.

Hence, the first order linearized expansion, similar to Equation
(8] is

i

T R S S
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u=u + 6(e)uy

v = 6(e)vy [42]
n=1+6(e)m ‘

The gauge function 6(€¢) represents the vortex strength
(6(c) = 0 as e = 0). 1Its form will be found from the require-
ments of matching with the already found outer solution [32]
and [33]. One could cbviously start the inner expansion with an
€ power series but an unknown gauge function has to be used in
this case in the outer expansion in order to make the matching

possible.

The varlables of the inner expansion [42] satisfy the Equa-
tions [9], (10}, [12] and [13], Equations [11) and [14 being re-
placed by

uWw +m =0 (y = 1) [43]
M =0 (x = -eo) [M&]

As usual the velocity components are separated in rerular
and singular parts

r s r s .
uy = u; o+ oy i =V + v {45}

onmn e B ekttt et o 2
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The singular term is selected to represent the potential
flow due to a vortex located at x = 0, y = » and confined between

two solid boundaries y = 0 and y = 1 (Figure 2).

The complex potential of this flow is

sinh %(z+iu)

] (z) = 3y tn - [46)
sinh E(z-ib)
8 S 5 af i
where z = x + 1y and w;° = uy - iv;° = d;
The velocity along the upper boundary is
S 1
ul(x,1) = 5 —2T [47]

cosh ™ + cos 1

The regular parts of the velocity components have to satisfy

the equation

2 I r 2 8
utu Lt e -u Sty (y = 1) [48])

which is obtained from Equations [%#3] and [12] by the elimination
of .. The solution may be represented by integral Fourler
transforms (Wehausen and Laltone, 1960) as
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W;z.(Z) = U - ile‘
[+ 4] oo
1 sin 7b k
=" Iy [ cosh s + cos mb _0° k(z-s) ij k cosh k- l/uo2sinhxdk
-Q0 -0

(49]

where uo2 € 1. Equation [49) will be integrated for ug < 1 and
ug will tend to lts critical value u, = 1 in the final result,

after imposing the rudiation condition.

The detalls of the integration for urt (x,1) are given in tne

Appendix. The final result for u,(x,1) is

uy (x,1) = uf‘(x,l) + uf (x,1)

..kmx

on
k sinh k b sin k x k sin kb e
< 2 o] o] _: m m + ¢ %0]
1 0 R 2 1 2, 2_
sinh ko( - = + Jo ko ) mel (u " + km u° l)sin km
o) (o}

for x 2 C. For x £ C, x has to be replaced by -x in Eguation [50],
¢ s an artitrary constant. In order to ensure the radilation re-
Juirement, the ..rst term 13 removed from Ejua:ion {5C) for

x < C bty adding to u; the proper sclutlion of the homogeneous e jud-
viorn (48] (Lamb, 19%5), which is, in the present case

ko sinh kob sin kox

1 2, 2
sinh ko(l ;;; + u° ko )
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The limiting case of u, = 1 may be computed by taking inzo

account that ko is a root of the following eguation

tanh k _ k-k?>/3+... 2
kK K =Y% [51]
Hence uo2 =1 - k02/3 + ... and the final expressions of u; (x.1)
when uo -+ 1 become
P -k _x
sin kmb e m
up (x,1) = 3bx -Z PTCWT (x 2 0) [52]
m m
m=1
o k X
sin k b e m

m=]

the higher terms(in koz, kg ... ) being neglected.

The complete solution of 17 , according to Equations [42],
{43]), [44], [52] and [53] 1is

-~k _x
2. sin Kmb e "
n =1 - 3bbx +Z IR (x 2 2) (54]
m m
m=l
® k x
m
* sin Kpb e
n-HZ SR (x £ 6) {551
m m

M=)

ady
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where tan k = k_ and k_ > 0.
_ m m m

w, Using the previous

i

; The 1nner solution 1s singular as x
outer expansion (Equation 23), the inner solution may be matched
with the outer sclution [{32] and [33] in the region x > O.

The ocuter 1imit of the inner representation is found from

Equation [55], through the usual procedure, to be

n =1 - 3b5(e)x {56]

-k €% X
where terms contalning e have been discarded since they

4 are exponentially small.

The outer limit of the inner representation of u(x.y) should
be dete-mined by integrating Equation [46] for arbitrary y. It
is known, however, that at x > 1 the u distribution is almost
unitform and u(x,1) may be substituted for u(x,y). Hence, ac-

cording to Equations [42] and [54]

s sin k b :kmx
U=y o+ 30Bx - EZE: k <1n K e [57]

m=1
and the outer 1limlt 1s

? S u = u_ + 3bbx, [58]
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The matching of the inner solution [56] and [58] with the

outer solution [32] and [33] at zero order implies No = Uo = 1.
The matching at ¢ order requires that UO and NO should be € de-

pendent (a similar situation occurs in the problem of inviscid

flow past an airfoil (Van Dyke, 1964)). Hence,

[58a]

These two relationships and Equation [27] show that, at the order

considered here,

u =1+ <G ‘% B® - 1) [59]

where the relationship 1/A% = 1-B® has been used.

The matching of the terms dependent on x provides the ad-
ditional relationship :

Ce = 3§'

2
%: bﬁ)%' (60]

From Equations [59] and [60] we finally find

b-=)

= [61]
B2 (1-B%)°  3(b5)?

ARG e e B
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31/3

¢ = (bg)2/3 [62]

[5(1-32)]2/3

Equations [61] and [62] permit the determination of B (also A

and B) and ¢C as functions of & and 1-u_.

Two extreme cases are of particular interest: 1In a first
case assume that § = 0, but l-uo # 0. Three solutions are then
possible: (1) B=1, 1i.e, B = », which means a uniform flow;
(11) B = 0 and 8/B = O which is again a uniform flow since
€eC = 0; (111i) B = 0 and 6/B # 0, which represents a solitary
wave, The last case 1s nontrivial but has to be excluded from
physical considera.ions. It has been considered as a mathemati-
cal possibility by Filippov (1960) using other methods.

In the second case u, = 1 and § # 0, which means that the

unperturbed upstream flow 1s exactly critical. In this case

/3 2/3
P -2 A2 =3 €C = 3‘3) (b6) [63)

The outer solution for the free-surface profile in the
general case according to Equations [26], [28] and [30], is
glven by

, |
n =N - € tanh® (-39— ) (e%x +8) [ 64]
4y °
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All the parameters appearing in Equation [64] may be determined
as runctions of (l-uo) and 6 from Equations [58], [59], [61] ard
[62]. A composite expansion with a uniform representation of n

%; may pe written by combining the inner and outer solutions (Van

5 Dyke¢, 1964). In the simple case u, = 1 the composite expansion

of n, for x 2 0, is

y = 2. sinkb -k x
1+ 2 (%) (06)° + 522: P A

Ui

- sin km
m=1
L b6 ¥ 1.3
-3(%) (b8) tanh® (35— X + coch™ ™ 3% [65]

In Figure 3 the shape of the free-surface is represented for the
particular case b = 0.6 and 6 = 0.01. The series in Equation

[65] has been summed by using an electronic computer with the

values of k from Carslaw and Jaeger (1959). The matching is

possible, at the order considered here, only for § << 1.

The drag force on the singularity may be found by a mo-
mentum balance between the sections X = - @ and X = ., The flow

depth and velocity at x = +o (downstream) are

{ . cc
n = No -eC=1 - K;
[66]
€L
u=0 =1+ —
° 2B

o i s g S e
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The dimensionless drag forces 1s, therefore, given at ¢

; order, by
| c\® c\® ¢ _ 2ec
! F=13- uog- %‘l- =1 u + E; l»-gg = “EE* [67]
A2 A A A
At the critical speed u, = 1, F has the simple expression §
4
V3 2/3 !
F - 2(%) (b8) [68] |
i
cr in a dimensional form
1/3 2/3
i 1 181 !
o =2(%) ( bgz) L69]
pg‘el g Z’

DISCUSSION OF RESULTS AND CONCLUSIONS

Three basic lengths are present in the problems discussed

in the foregoing sections: the flow depth £', the amplitude
(associated with €) and the ratio u'oz/g. In the infinitesimal
| wave expansion the last two lengths are referred to £' and the
, periodic solution of the homogeneous equations in the subcriti-
cal range provides the well-known dispersion relationship be- é
tween Fr = uo'/(gl')i and the wave length L' (Equation 18). For ;
small values of a, where a = 2rf'/L', Equation [18] yields

= 3(1-Fr?).

2
(272'

Ll

2 Ao ot i 14 . 0 S T,
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As Fr= 1, L' - « and the homogenecus problem has a non-
periodical solution divergent at infinity (Equations 37). The
shallow water solution 1is found by relating x' to L' rather
than to £' and by imposing a nonlinear relationship between the
amplitude and the wavelength (in the case of the solitary wave
a ~ e%). In this sense the results obtained by using the method
of matched asymptotic expansions are related to other derivations
of the first order equations of shallow flow (see, for instance,

BenJamin (1967), p. 561-562).

Although the flow has been found in the vicinity of the
singularity by linear equations, the dependence of the solution
on the problem's small parameter (1-h in the case of the solitary
wave and 6 i1s that of the singularity) is nonlinear, even at first
order (Equations [40], [65] and [68]). 1In this sense the solu-

tions may be regarded as nonlinear.

The solutions for the higher order terms of the expansions
and thelr matching should provide very valuable information and
insight into the problem, but the computations become tedious as
the order 1s increased in the inner expansions.

The method of matched asymptotic expansions proves itself
to be a powerful too. in solving nonlinear problems of fluid

mechanics in general, and of water waves in particular.
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APPENDIX !
THE INTEGRATION OF EQUATION [49]
One of the integrals of [49) may be evaluated in the fol- 1

lowing closed form (Gradshteyn and Ryzhik, pp. 505)

o0

jr cosk (z-s) ds = 2 sinh kb cos kz (70]

cosh s + cos 7Y% "~ © sin 7b sinh k

Hence, Equation [49] becomes

w;r(z)-tu?- 1v1r=__£; PV k sinh kb coslkz dk
' sinh k(k cosh k - — sinh k)
-00 u 2
e
[71]
On the upper boundary z = x + i the real part of [72] is : J
o 3
1kx :
w(x,1) = - 2= PV K aimh ¥b a (73] .*:
sink k(¥ - —== tanh k) 3
-on u

0

ki et

The integration of Equation [73) follows Lamb's procedure.
For x > O the integration is carried out in the upper k complex
plane. The poles of the integrand have the following locations:
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two poles k = # ko on the real axes, roots of the equation
tanh k = uozk; a row of poles on the imaginary axes k = 1km
(m=1,2,...), roots of the equation tan k = u;k and a row of

poles k = inm (n =1,2,...).

b The contribution of the last series of poles is

i

sin knb e'knx

cos
o] kn

n=1

The same sum is obtained from the integral

1kx
1 J( sinh kb e

er sinh k

St A WS R,

which may be integrated in a closed form (Gradshteyn and Ryzhik,
p. 507), the result being

k X

: [ ] =
: | n
: ji: sin knb € -3 sin b

cos kn cosh #x + cos wb

n=)

The contribution of the poles kh is given by the sum of

residues, 1.e.
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. ‘kx

o0
m
_ Z{: km sin kmb e
1 -1+k?32u2)|sink
——2' m O m
u
0

m=1

The contribution of the poles ¢ ko 1s evaluated by in-
tegrating [ 73] along two semi-circles, in order to obtain the

principal value. The result 1s

gro—ny

k sinh k b sin k x
0 (¢} 0

These partial results are summed in Equation [50]

When x < O the results are similar, and are obtainad from

those above by replacing x by -x.

P
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FIGURE | - THE SOLITARY WAVE

FIGURE 2 - A VORTEX IN A UNIFORM STRELM
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